MATERIAL SAFETY DATA SHEET SDS/MSDS #### Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION #### **PRODUCT NAME** MANGANESE STANDARD SOLUTION (10000MG/L) #### **OTHER NAMES** "laboratory reagent" # PROPER SHIPPING NAME CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.(contains nitric acid) #### **PRODUCT USE** General laboratory reagent; spectrophotometric calibration standard solution. #### **SUPPLIER** Company: BIO-CHEM Chemical 5455, Nicholson Road Science Market, Ambala Cantt. 133001 Haryana (India) +91-82952 41953 info@biofinechemical.com - www.biofinechemical.com ### **Section 2 - HAZARDS IDENTIFICATION** # **HAZARD RATINGS** #### **GHS Classification** Acute Toxicity (Inhalation) Category 3 Metal Corrosion Category 1 Serious Eye Damage Category 1 Skin Corrosion/Irritation Category 1C # **EMERGENCY OVERVIEW** #### **HAZARD** **DANGER** Determined by using GHS criteria: H331 H290 H314 H318 H318 Toxic if inhaled May be corrosive to metals Causes severe skin burns and eye damage Causes serious eye damage Causes serious eye damage # PRECAUTIONARY STATEMENTS #### Prevention Keep only in original container. Do not breathe dust/fume/gas/mist/vapours/spray. Avoid breathing dust/fume/gas/mist/vapours/spray. Wash thoroughly after handling. Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing/eye protection/face protection. #### Response IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. IF INHALED: Remove to fresh air and keep at rest in a position comfortable for breathing. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or doctor/physician. Call a POISON CENTER or doctor/physician. Wash contaminated clothing before reuse. Absorb spillage to prevent material damage. # **Storage** Store in a well-ventilated place. Keep container tightly closed. Store locked up. Store in corrosive resistant container or with a resistant inner liner. #### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS NAME CAS RN % manganese nitrate 10377-66-9 0.1 nitric acid 7697-37-2 NOT SPEC water 7732-18-5 NOT SPEC No other ingredient information supplied. # **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** - For advice, contact a Poisons Information Centre or a doctor at once. - Urgent hospital treatment is likely to be needed. - If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Transport to hospital or doctor without delay. #### **EYE** - If this product comes in contact with the eyes: - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### SKIN - If skin or hair contact occurs: - Immediately flush body and clothes with large amounts of water, using safety shower if available. - Quickly remove all contaminated clothing, including footwear. - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. - Transport to hospital, or doctor. # **INHALED** - If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor. #### **NOTES TO PHYSICIAN** ■ Treat symptomatically. For acute or short term repeated exposures to strong acids: - Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially. - Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling - Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise. - Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION: - Immediate dilution (milk or water) within 30 minutes post ingestion is recommended. - DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury. - Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult. - Charcoal has no place in acid management. - Some authors suggest the use of lavage within 1 hour of ingestion. #### SKIN: - Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping. - Deep second-degree burns may benefit from topical silver sulfadiazine. #### EYE: - Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-desacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required. - Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury. - Steroid eye drops should only be administered with the approval of a consulting ophthalmologist). [Ellenhorn and Barceloux: Medical Toxicology]. #### **Section 5 - FIRE FIGHTING MEASURES** # **EXTINGUISHING MEDIA** - · Water spray or fog. - · Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### FIRE FIGHTING - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - Do not approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. # FIRE/EXPLOSION HAZARD - Non combustible. - Not considered to be a significant fire risk. - Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. - · Heating may cause expansion or decomposition leading to violent rupture of containers. - May emit corrosive, poisonous fumes. May emit acrid smoke. Decomposition may produce toxic fumes of: nitrogen oxides (NOx). May emit poisonous fumes. May emit corrosive fumes. #### FIRE INCOMPATIBILITY ■ None known. #### **Personal Protective Equipment** Gas tight chemical resistant suit. #### **Section 6 - ACCIDENTAL RELEASE MEASURES** # **MINOR SPILLS** - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact by using protective equipment. - Contain and absorb spill with sand, earth, inert material or vermiculite. - Wipe up. - Place in a suitable, labelled container for waste disposal. #### **MAJOR SPILLS** - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - · Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - · Collect recoverable product into labelled containers for recycling. - · Neutralise/decontaminate residue. - Collect solid residues and seal in labelled drums for disposal. - · Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. PROTECTIVE ACTIONS FOR SPILL From IERG (Canada/Australia) Isolation Distance 25 metres Downwind Protection Distance 250 metres IERG Number 37 # **FOOTNOTES** - 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance. - 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. - 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. - 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. - 5 Guide 154 is taken from the US DOT emergency response guide book. - 6 IERG information is derived from CANUTEC Transport Canada. # Personal Protective Equipment advice is contained in Section 8 of the MSDS. #### Section 7 - HANDLING AND STORAGE # PROCEDURE FOR HANDLING - DO NOT allow clothing wet with material to stay in contact with skin. - · Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - · Avoid contact with moisture. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - · Avoid physical damage to containers. - · Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. ### SUITABLE CONTAINER - DO NOT use aluminium or galvanised containers. - · Check regularly for spills and leaks. - · Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. For low viscosity materials - Drums and jerricans must be of the non-removable head type. - Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - · Cans with friction closures and - low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. ### STORAGE INCOMPATIBILITY - Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air. - Avoid strong bases. - Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0. - Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts neutralisation can generate dangerously large amounts of heat in small spaces. - The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat. - The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid. - Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas. - Inorganic acids can initiate the polymerisation of certain classes of organic compounds. - Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide. - Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitrides, nitriles, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates. - Acids often catalyse (increase the rate of) chemical reactions. # STORAGE REQUIREMENTS - · Store in original containers. - · Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. _____ # SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS +: May be stored together O: May be stored together with specific preventions X: Must not be stored together # Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION | EXPOSURE CONTROLS Source | Material | TWA ppm | TWA mg/m³ | STEL ppm | STEL mg/m³ | |--------------------------|---------------------------|---------|-----------|----------|------------| | Australia Exposure | manganese nitrate | | 1 | | 3 | | Standards | (Manganese, fume (as Mn)) | | | | | | Australia Exposure | manganese nitrate | | 1 | | | | Standards | (Manganese, dust & | | | | | | | compounds (as Mn)) | | | | | | Australia Exposure | nitric acid (Nitric | 2 | 5.2 | 4 | 10 | | Standards | acid) | | | | | The following materials had no OELs on our records • water: CAS:7732- 18- 5 #### **EMERGENCY EXPOSURE LIMITS** Material Revised IDLH Value (mg/m3) Revised IDLH Value (ppm) manganese nitrate 500 nitric acid 25 #### **MATERIAL DATA** MANGANESE STANDARD SOLUTION (10000MG/L) Not available # MANGANESE NITRATE: ■ A number of studies have shown that susceptibility to the effects of manganese at or about 1 - 5 mg/m3 (TWA) can lead to clinical manifestations of manganism or more commonly to the development of indicators of sub-clinical manganism (e.g. hand tremor, exaggerated reflexes, short-term memory deficits, poor psychomotor performance). Controlling long-term exposure to the recommended ES TWA level or below should provide protection for those individuals susceptible to neurological effects of prolonged exposure. Ceiling values were recommended for manganese and compounds in earlier publications. As manganese is a chronic toxin a TWA is considered more appropriate. Because workers exposed to fume exhibited manganism at air-borne concentrations below those that affect workers exposed to dust a lower value has been proposed to provide an extra margin of safety. This value is still above that experienced by two workers exposed to manganese fume in the course of one study. #### NITRIC ACID: ■ For nitric acid: Odour Threshold Value: 0.27 ppm (detection) NOTE: Detector tubes for nitric acid, measuring in excess of 5 ppm, are commercially available. The TLV-TWA is protective against corrosion of the skin, tissue and other membranes, against irritation to the eyes and mucous membranes, and against acute pulmonary oedema or chronic obstructive lung disease. It is not clear whether the TLV-TWA and STEL values will prevent potentiation of the toxicity of inhaled nitrogen dioxide. #### WATER: ■ No exposure limits set by NOHSC or ACGIH. #### PERSONAL PROTECTION #### EYE - · Chemical goggles. - Full face shield may be required for supplementary but never for primary protection of eyes - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. # HANDS/FEET - · Wear chemical protective gloves, eg. PVC. - Wear safety footwear or safety gumboots, eg. Rubber. - When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - · frequency and duration of contact, - chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **OTHER** - · Overalls. - PVC Apron. - PVC protective suit may be required if exposure severe. - Eyewash unit. - Ensure there is ready access to a safety shower. #### RESPIRATOR ■ Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Breathing Zone Level | Maximum Protection | Half- face Respirator | Full- Face Respirator | |----------------------|--------------------|-----------------------|-----------------------| | ppm (volume) | Factor | | | | 1000 | 10 | AE- AUS P | - | | 1000 | 50 | - | AE- AUS P | | 5000 | 50 | Airline * | - | | 5000 | 100 | - | AE- 2 P | | 10000 | 100 | - | AE- 3 P | | | 100+ | | Airline** | ^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult your Occupational Health and Safety Advisor. # **ENGINEERING CONTROLS** ■ General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: solvent, vapours, degreasing etc., evaporating from tank (in still air). aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Air Speed: 0.25- 0.5 m/s (50- 100 f/min) 0.5- 1 m/s (100- 200 f/min.) 1- 2.5 m/s (200- 500 f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) 2.5- 10 m/s (500- 2000 f/min.) Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only. 3: Intermittent, low production. 4: Large hood or large air mass in motion Upper end of the range 1: Disturbing room air currents 2: Contaminants of high toxicity 3: High production, heavy use 4: Small hood- local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Section 9 - PHYSICAL AND CHEMICAL PROPERTIES #### **APPEARANCE** Colourless and odourless liquid; mixes with water. #### **PHYSICAL PROPERTIES** Volatile Component (%vol) Mixes with water. Corrosive. Acid. | State | LIQUID | Molecular Weight | Not Applicable | |---------------------------|----------------|----------------------------|----------------| | Melting Range (°C) | ~0 | Viscosity | Not Available | | Boiling Range (°C) | ~100 | Solubility in water (g/L) | Miscible | | Flash Point (°C) | Not Applicable | pH (1% solution) | Not Available | | Decomposition Temp (°C) | Not Available | pH (as supplied) | Not Available | | Autoignition Temp (°C) | Not Available | Vapour Pressure (kPa) | Not Available | | Upper Explosive Limit (%) | Not Applicable | Specific Gravity (water=1) | ~1.0 | | Lower Explosive Limit (%) | Not Applicable | Relative Vapour Density | Not Available | Relative Vapour Density (air=1) **Evaporation Rate** Not Available # Section 10 - CHEMICAL STABILITY AND REACTIVITY INFORMATION Not Available # **CONDITIONS CONTRIBUTING TO INSTABILITY** · Contact with alkaline material liberates heat. For incompatible materials - refer to Section 7 - Handling and Storage. #### Section 11 - TOXICOLOGICAL INFORMATION #### POTENTIAL HEALTH EFFECTS #### **ACUTE HEALTH EFFECTS** # **SWALLOWED** - The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. - Accidental ingestion of the material may be damaging to the health of the individual. #### EYE - If applied to the eyes, this material causes severe eye damage. - The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. #### SKIN - The material can produce chemical burns following direct contactwith the skin. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - If inhaled, this material can irritate the throat andlungs of some persons. - The material is not thought to produce adverse health effects following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. - Not normally a hazard due to non-volatile nature of product. - Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset. # **CHRONIC HEALTH EFFECTS** ■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva. # **TOXICITY AND IRRITATION** ■ Not available. Refer to individual constituents. # MANGANESE NITRATE: - unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances. - Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. No significant acute toxicological data identified in literature search. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. #### NITRIC ACID: ■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. **IRRITATION** Nil Reported TOXICITY Oral (human) LDLo: 430 mg/kg Inhalation (rat) LC50: 2500 ppm/1h * * DuPont Unreported (man) LDLo: 110 mg/kg Inhalation (Cat) LC: 500 mg/m³/4h Inhalation (Rat) LC50: 130 mg/m³/4h Oral (Human) LD: 430 mg/kg Inhalation (Cat) TCLo: 300 mg/m³/2h ■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. Oral (?) LD50: 50-500 mg/kg * [Various Manufacturers] #### WATER: ■ No significant acute toxicological data identified in literature search. #### Section 12 - ECOLOGICAL INFORMATION Refer to data for ingredients, which follows: #### NITRIC ACID: MANGANESE STANDARD SOLUTION (10000MG/L) ■ Prevent, by any means available, spillage from entering drains or water courses. MANGANESE NITRATE: NITRIC ACID: ### MANGANESE STANDARD SOLUTION (10000MG/L) ■ DO NOT discharge into sewer or waterways. # MANGANESE STANDARD SOLUTION (10000MG/L) Marine Pollutant: Not Determined # MANGANESE NITRATE: - Harmful to aquatic organisms. - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities. Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects. A metal ion is considered infinitely persistent because it cannot degrade further. The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation. The counter-ion may also create heath and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable. Environmental processes may enhance bioavailability. ■ The nitrates are of environmental concern because of their high water solubility and consequent leaching, diffusion, and environmental mobility in soil and water. Nitrate can contaminate groundwater to unacceptable levels. Nitrite is formed from nitrate or ammonium ion by micro-organisms in soil, water, sewage and the alimentary tract. The concern with nitrate in the environment is related to its conversion to nitrite. Methaemoglobinaemia is caused following exposure to high levels of nitrite and produces difficulties in oxygen transport in the blood. Thousands of cases involving poisoning of infants, particularly in rural areas, have been reported as a result of drinking nitrate rich well-water. Other concerns deriving from exposure to environmental nitrates relate to the production of nitrosamines following the reaction of food nitrites and secondary amines. Other nitroso-compounds may result following reaction with nitrites and amides, ureas, carbamates and other nitrogenous compounds. Nitrosamines produce liver damage, haemorrhagic lung lesions, convulsions and coma in rats, and teratogenic effects in experimental animals. The N-nitroso class of compounds include potent carcinogens and mutagens: induction of tumors by single doses of N-nitroso compounds testify to this. ■ For manganese and its compounds: Environmental fate: It has been established that while lower organisms (e.g., plankton, aquatic plants, and some fish) can significantly bioconcentrate manganese, higher organisms (including humans) tend to maintain manganese homeostasis. This indicates that the potential for biomagnification of manganese from lower trophic levels to higher ones is low. There were two mechanisms involved in explaining the retention of manganese and other metals in the environment by soil. First, through cation exchange reactions, manganese ions and the charged surface of soil particles form manganese oxides, hydroxides, and oxyhydroxides which in turn form absorption sites for other metals. Secondly, manganese can be adsorbed to other oxides, hydroxides, and oxyhydroxides through ligand exchange reactions. When the soil solution becomes saturated, these manganese oxides, hydroxides, and oxyhydroxides can precipitate into a new mineral phase and act as a new surface to which other substances can absorb. The tendency of soluble manganese compounds to adsorb to soils and sediments depends mainly on the cation exchange capacity and the organic composition of the soil. The soil adsorption constants (the ratio of the concentration in soil to the concentration in water) for Mn(II) span five orders of magnitude, ranging from 0.2 to 10,000 mL/g, increasing as a function of the organic content and the ion exchange capacity of the soil; thus, adsorption may be highly variable. In some cases, adsorption of manganese to soils may not be a readily reversible process. At low concentrations, manganese may be "fixed" by clays and will not be released into solution readily. At higher concentrations, manganese may be desorbed by ion exchange mechanisms with other ions in solution. For example, the discharge of waste water effluent into estuarine environments resulted in the mobilization of manganese from the bottom sediments. The metals in the effluent may have been preferentially adsorbed resulting in the release of manganese. The oxidation state of manganese in soil and sediments may be altered by microbial activity; oxidation may lead to the precipitation of manganese. Bacteria and microflora can increase the mobility of manganese. The transport and partitioning of manganese in water is controlled by the solubility of the specific chemical form present, which in turn is determined by pH, Eh (oxidation-reduction potential), and the characteristics of the available anions. The metal may exist in water in any of four oxidation states. Manganese(II) predominates in most waters (pH 4-7) but may become oxidized at a pH >8 or 9. The principal anion associated with Mn(II) in water is usually carbonate (CO3.2), and the concentration of manganese is limited by the relatively low solubility (65 mg/L) of MnCO3. In relatively oxidized water, the solubility of Mn(II) may be controlled by manganese oxide equilibria, with manganese being converted to the Mn(II) or Mn(IV) oxidation states. In extremely reduced water, the fate of manganese tends to be controlled by formation of a poorly soluble sulfide. Manganese in water may undergo oxidation at high pH or Eh and is also subject to microbial activity. For example, Mn(II) in a lake was oxidized during the summer months, but this was inhibited by a microbial poison, indicating that the oxidation was mediated by bacteria . The microbial metabolism of manganese is presumed to be a function of pH, temperature, and other factors. Manganese in water may be significantly bioconcentrated at lower trophic levels. A bioconcentration factor (BCF) relates the concentration of a chemical in plant and animal tissues to the concentration of the chemical in the water in which they live. The BCF of manganese was estimated as 2,500 - 6,300 for phytoplankton, 300 -5,500 for marine algae, 80 - 830 for intertidal mussels, and 35 - 930 for coastal fish. Similarly, the BCF of manganese was estimated to be 10.00 -20,000 for marine and freshwater plants, 10,000 -40,000 for invertebrates, and 10 - 600 for fish. In general, these data indicate that lower organisms such as algae have larger BCFs than higher organisms. In order to protect consumers from the risk of manganese bioaccumulation in marine mollusks, the U.S. EPA has set a criterion for manganese at 0.1 mg/L for marine waters. Elemental manganese and inorganic manganese compounds have negligible vapor pressures but may exist in air as suspended particulate matter derived from industrial emissions or the erosion of soils. Manganese-containing particles are mainly removed from the atmosphere by gravitational settling, with large particles tending to fall out faster than small particles. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Some removal by washout mechanisms such as rain may also occur, although it is of minor significance in comparison to dry deposition. #### NITRIC ACID: **Ecotoxicity** #### ■ For oxides of nitrogen: ## Environmental fate Oxides of nitrogen are part of the biogeochemical cycling of nitrogen, and are found in air, soil and water. In the atmosphere, oxides of nitrogen are rapidly oxidised to nitrogen dioxide (half-life about 50 days), which dissolves in water to produce dilute nitric acid and precipitates in rain. An increased rate of formation of oxides of nitrogen therefore contributes to 'acid rain'. In the stratosphere, oxides of nitrogen play a crucial role in maintaining the level of ozone. Ozone is formed through the photochemical reaction of nitrogen dioxide and oxygen. However, too little nitrogen dioxide results in too little ozone being formed, On the other hand, too much nitric oxide reduces the level of ozone because of an increase in the reaction of ozone to convert nitric oxide to nitrogen dioxide. In the lower atmosphere, oxides of nitrogen play a major role in the formation of photochemical smog in a complex set of reactions that lead to the formation of a variety of nitrated organic compounds (from volatile organic matter) and excessive levels of ozone. Environmental transport The oxides of nitrogen travel as gases through soil and the atmosphere, and in solution in water in soils, rivers and lakes, and rain and snow. | Ingredient | Persistence:
Water/Soil | Persistence: Air | Bioaccumulation | Mobility | |-------------|----------------------------|------------------|-----------------|----------| | nitric acid | | | LOW | | | water | LOW | | LOW | HIGH | # **Section 13 - DISPOSAL CONSIDERATIONS** ■ Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction, - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration. distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - · Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material). - Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed. # Section 14 - TRANSPORTATION INFORMATION Labels Required: CORROSIVE # **HAZCHEM:** □ 2X Land Transport UNDG: Class or division: 8 Subsidiary risk: None UN No.: 3264 UN packing group: Ш Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains nitric acid) # Air Transport IATA: ICAO/IATA Class: 8 ICAO/IATA Subrisk: None **UN/ID Number:** 3264 Packing Group: Special provisions: A3 Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. *(CONTAINS NITRIC ACID) **Maritime Transport IMDG:** IMDG Class:8IMDG Subrisk:NoneUN Number:3264Packing Group:III EMS Number: F- A, S- B Special provisions: 223 274 944 Limited Quantities: 5 L Marine Pollutant: Not Determined Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.(contains nitric acid) #### Section 15 - REGULATORY INFORMATION #### **REGULATIONS** Regulations for ingredients manganese nitrate (CAS: 10377-66-9,15710-66-4,17141-63-8,20694-39-7,13224-08-3) is found on the following regulatory lists; "Australia Inventory of Chemical Substances (AICS)" nitric acid (CAS: 7697-37-2) is found on the following regulatory lists; "Australia Exposure Standards","Australia Hazardous Substances","Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)","Australia National Pollutant Inventory","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix E (Part 2)", "Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix F (Part 3)","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 5","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals" # water (CAS: 7732-18-5) is found on the following regulatory lists; "Australia Inventory of Chemical Substances (AICS)","IMO IBC Code Chapter 18: List of products to which the Code does not apply","OECD Representative List of High Production Volume (HPV) Chemicals" No data for Manganese Standard Solution (10000MG/L) (31054) #### **Section 16 - OTHER INFORMATION** #### **INGREDIENTS WITH MULTIPLE CAS NUMBERS** Ingredient Name CAS manganese nitrate 10377- 66- 9, 15710- 66- 4, 17141- 63- 8, 20694- 39- 7, 13224- 08- 3 #### **EXPOSURE STANDARD FOR MIXTURES** - "Worst Case" computer-aided prediction of spray/ mist or fume/ dust components and concentration: - Composite Exposure Standard for Mixture (TWA):100 mg/m³. - Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by using available literature references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. The above information is believed to be accurate and represent the best information currently available to us, but does not represent any warranty expressed or implied of the properties of the product. User should make their own investigation to determine the suitability of the information for their particular purpose.